4.5 Article

Hydrodynamic Properties of Magnetic Nanoparticles with Tunable Shape Anisotropy: Prediction and Experimental Verification

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 115, 期 49, 页码 14838-14845

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp2078264

关键词

-

资金

  1. Adolphe Merkle Foundation
  2. Swiss National Science Foundation
  3. COST action [D43]
  4. Swiss State Secretariat for Education and Research
  5. SoftComp network

向作者/读者索取更多资源

We describe the characterization of the hydrodynamic properties of anisotropic magnetic nanoparticles using a combination of transmission electron microscopy (TEM) and dynamic as well as depolarized dynamic light scattering (DLS/DDLS). The particles used are nearly monodisperse hematite spindles with an average length of 280 nm and a minor axis of 57 nm, coated with a layer of silica of variable thickness that allows us to tune the particle aspect ratio between 5 and 2. Their geometrical dimensions can thus be determined easily and quantitatively from TEM. Moreover, their size is ideal to employ DLS and DDLS to measure the translational and rotational diffusion coefficients D-T and D-R, while the presence of a magnetic core opens a plethora of opportunities for future studies and applications. We demonstrate that we can successfully predict the hydrodynamic properties of the different particles based on a TEM characterization of their size distribution and using established theoretical models for the hydrodynamic properties of anisotropic particles. When compared with the theoretical predictions, our light scattering measurements are in quantitative agreement. This agreement between theory and experiment is achieved without having to invoke any adjustable free parameter, as the TEM results are used to calculate the corresponding diffusion coefficients on an absolute scale We demonstrate that this is achieved due to a new and simple method for the statistical weighting of the TEM information, and the use of the correct hydrodynamic models for the observed particle shape. In addition, we also demonstrate an enhanced sensitivity of the rotational diffusion for the surface properties of ellipsoidal nanoparticles, and point out that this may serve as an ideal tool toward characterizing functionalized surfaces.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据