4.5 Article

Molecular Dynamics Simulation Study of Glycerol-Water Liquid Mixtures

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 115, 期 49, 页码 14572-14581

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp208758r

关键词

-

资金

  1. Human Capital Foundation (Russia)
  2. Russian Foundation for Basic Research [10-03-01043a]
  3. Swedish Science Council (VR)
  4. Swedish National Infrastructure in Computing (SNIC)

向作者/读者索取更多资源

To study the effects of water on conformational dynamics of polyalcohols, Molecular Dynamics simulations of glycerol water liquid mixtures have been carried out at different concentrations: 42.9 and 60.0 wt 96 of glycerol, respectively. On the basis of the analysis of backbone conformer distributions, it is found that the surrounding water molecules have a large impact on the populations of the glycerol conformers. While the local structure of water in the liquid mixture is surprisingly close to that in pure liquid water, the behavior of glycerols can be divided into three different categories where roughly 25% of them occur in a structure similar to that in pure liquid of glycerol, ca. 25% of them exist as monomers, solvated by water, and the remaining 50% of glycerols in the mixture form H-bonded strings as. remains of the glycerol H-bond network. The typical glycerol H-bond network still exists even at the lower concentration of 40 wt % of glycerol. The microheterogeneity of water glycerol mixtures is analyzed using time-averaged distributions of the sizes of the water aggregates. At 40 wt % of glycerol, the cluster sizes from 3 to 10 water molecules are observed. The increase of glycerol content causes a depletion of clusters leading to smaller 3-5 molecule clusters domination. Translational diffusion coefficients have been calculated to study the dynamical behavior of both glycerol and water molecules. Rotational-reorientational motion is studied both in overall and in selected substructures on the basis of time correlation functions. Characteristic time scales for different motional modes are deduced on the basis of the calculated correlation times. The general conclusion is that the presence of water increases the overall mobility of glycerol, while glycerol slows the mobility of water.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据