4.7 Article

Cosmological implications of baryon acoustic oscillation measurements

期刊

PHYSICAL REVIEW D
卷 92, 期 12, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.92.123516

关键词

-

资金

  1. Alfred P. Sloan Foundation
  2. National Science Foundation
  3. U.S. Department of Energy Office of Science
  4. University of Arizona
  5. Brazilian Participation Group
  6. Brookhaven National Laboratory
  7. Carnegie Mellon University
  8. University of Florida
  9. French Participation Group
  10. German Participation Group
  11. Harvard University
  12. Instituto de Astrofisica de Canarias
  13. Michigan State/Notre Dame/JINA Participation Group
  14. Johns Hopkins University
  15. Lawrence Berkeley National Laboratory
  16. Max Planck Institute for Astrophysics
  17. Max Planck Institute for Extraterrestrial Physics
  18. New Mexico State University
  19. New York University
  20. Ohio State University
  21. Pennsylvania State University
  22. University of Portsmouth
  23. Princeton University
  24. Spanish Participation Group
  25. University of Tokyo
  26. University of Utah
  27. Vanderbilt University
  28. University of Virginia
  29. University of Washington
  30. Yale University
  31. ICREA Funding Source: Custom
  32. STFC [ST/L00481X/1, ST/J500665/1, ST/K004719/1, ST/K00090X/1, ST/L005573/1, ST/K502248/1] Funding Source: UKRI
  33. Science and Technology Facilities Council [ST/J500665/1, ST/K502248/1, ST/L005573/1, ST/K00090X/1, 1246657, ST/L00481X/1] Funding Source: researchfish

向作者/读者索取更多资源

We derive constraints on cosmological parameters and tests of dark energy models from the combination of baryon acoustic oscillation (BAO) measurements with cosmic microwave background (CMB) data and a recent reanalysis of Type Ia supernova (SN) data. In particular, we take advantage of high-precision BAO measurements from galaxy clustering and the Lyman-alpha forest (LyaF) in the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). Treating the BAO scale as an uncalibrated standard ruler, BAO data alone yield a high confidence detection of dark energy; in combination with the CMB angular acoustic scale they further imply a nearly flat universe. Adding the CMB-calibrated physical scale of the sound horizon, the combination of BAO and SN data into an inverse distance ladder yields a measurement of H-0 = 67.3 +/- 1.1 km s(-1) Mpc(-1), with 1.7% precision. This measurement assumes standard prerecombination physics but is insensitive to assumptions about dark energy or space curvature, so agreement with CMB-based estimates that assume a flat Lambda CDM cosmology is an important corroboration of this minimal cosmological model. For constant dark energy (Lambda), our BAO + SN + CMB combination yields matter density Omega(m) = 0.301 +/- 0.008 and curvature Omega(k) = -0.003 +/- 0.003. When we allow more general forms of evolving dark energy, the BAO + SN + CMB parameter constraints are always consistent with flat Lambda CDM values at approximate to 1 sigma. While the overall chi(2) of model fits is satisfactory, the LyaF BAO measurements are in moderate (2-2.5 sigma) tension with model predictions. Models with early dark energy that tracks the dominant energy component at high redshift remain consistent with our expansion history constraints, and they yield a higher H-0 and lower matter clustering amplitude, improving agreement with some low redshift observations. Expansion history alone yields an upper limit on the summed mass of neutrino species, Sigma m(nu) < 0.56 eV (95% confidence), improving to Sigma m(nu) < 0.25 eV if we include the lensing signal in the Planck CMB power spectrum. In a flat Lambda CDM model that allows extra relativistic species, our data combination yields N-eff = 3.43 +/- 0.26; while the LyaF BAO data prefer higher N-eff when excluding galaxy BAO, the galaxy BAO alone favor N-eff approximate to 3. When structure growth is extrapolated forward from the CMB to low redshift, standard dark energy models constrained by our data predict a level of matter clustering that is high compared to most, but not all, observational estimates.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据