4.5 Article

Substrate Recognition in the Escherichia coli Ammonia Channel AmtB: A QM/MM Investigation

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 114, 期 36, 页码 11859-11865

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp102338h

关键词

-

资金

  1. Spanish Ministerio de Educacion y Ciencia [FIS2108-03845]
  2. Generalitat de Catalunya (GENCAT) [2109SGR-1309]
  3. European Commission
  4. Danish National Research Foundation
  5. ICREA Funding Source: Custom

向作者/读者索取更多资源

Although the Escherichia coli ammonia transporter B (AmtB) protein has been the focus of several recent studies, there are still many questions and controversies regarding substrate binding and recognition. Specifically, how and where AmtB differentiates between substrates is not yet fully understood. The present computational study addresses the importance of intermolecular interactions with respect to substrate recruitment and recognition by means of ab initio QM/MM simulations. On the basis of calculations with substrates NH3, NH4+, Na+, and K+ positioned at the periplasmic binding site (Am1) and NH3 and NH4+ at intraluminal binding sites (Am1a/b), we conclude that D160 is the single most important residue for substrate recruitment, whereas cation-pi interactions to W148 and F107 are found to be less important. Regarding substrate recruitment and recognition, we find that only NH4+ and K+ reach the Am1 site. However, NH4+ has the largest affinity for this site due to its better dehydration compensation, while charge stabilization effects favor the binding of NH4+ over NH3 (i.e., if NH3 would enter the Am1 site, it is likely to be protonated). Therefore, we conclude that the Am1 site selects NH4+ over Na+, K+ and NH3. Our calculations also suggest that translocation of NH4+ from Am1 into the channel lumen is driven by rotation of the A162-G163 peptide bond, which coordinates NH4+ but not NH3 at both Am1 and Am1a/b sites.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据