4.5 Article

Molecular Dynamics Modeling of Proton Transport in Nation and Hylton Nanostructures

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 114, 期 18, 页码 6056-6064

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp903288y

关键词

-

资金

  1. Estonian Science Foundation [ETF 6763]

向作者/读者索取更多资源

Classical molecular dynamics modeling studies at 363 K are reported of the local atomic-level and macroscopic nanostructures of two well-known perfluorosulfonic acid proton exchange polymer membrane materials: Nation and Hyflon. The influence of the different side-chain lengths in the two polymers on local structure is relatively small: Hyflon exhibits slightly greater sulfonate-group clustering, while Nation has more isolated side chains with a higher degree of hydration around the SO3- side-chain ends. This results in shorter mean residence times for water molecules around the end groups in Nation. Hyflon also displays a lower degree of phase separation than Nafion. The velocities of the water molecules and hydronium ions are seen to increase steadily from the polymer backbone/water interface toward the center of the water channels. Because of its shorter side chains, the number of hydronium ions is similar to 50% higher at the center of the water channels in Hyflon, and their velocities are similar to 10% higher. The water and H3O+ diffusion coefficients are therefore higher in the shorter side-chain Hyflon system: 6.5 x 10(-6) cm(2)/s and 25.2 x 10(-6) cm(2)/s, respectively; the corresponding values for Nation are 6.1 x 10(-6) cm(2)/s and 21.3 x 10(-6) cm(2)/s, respectively. These calculated values compare well with experiment: 4 x 10(-6) cm(2)/s for vehicular H3O+ diffusion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据