4.5 Article

Cross-Linked Bioreducible Layer-by-Layer Films for Increased Cell Adhesion and Transgene Expression

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 114, 期 16, 页码 5283-5291

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp100486h

关键词

-

资金

  1. National Institutes of Health [CA 109711]
  2. National Science Foundation [CBET-0553533, CBET-0755654]
  3. Max Planck Society
  4. National Science Foundation
  5. Max Planck Institute of Colloids and Interfaces

向作者/读者索取更多资源

The effect of cross-linking layer-by-layer (LbL) films consisting of bioreducible poly(2-dimethylaminoethyl methacrylate) (rPDMAEMA) and DNA is examined with regard to rigidity, biodegradability, cell adhesion, and transfection activity using 1,5-diiodopentane (DIP) cross-linker. DIP chemically reacts with the tertiary amines of rPDMAEMA, altering the chemical composition of these LbL films. The result is a change in surface morphology, film swelling behavior, and film rigidity, measured with AFM and ellipsometry. It is found that the apparent Young's modulus is increased more than 4 times its original value upon cross-linking. Cross-linking mass is additionally confirmed with a quartz crystal microbalance with dissipation (QCM-D). Comprehensive analyses of these experimental values were investigated to calculate the degree of cross-linking using the rubber elasticity theory and the Flory-Rehner theory. Additionally, the Flory-Huggins parameter, chi, was calculated. Good agreement in the two methods yields a cross-linking density of similar to 0.82 mmol/cm(3). The Flory-Huggins parameter increased upon cross-linking from 1.07 to 1.2, indicating increased hydrophobicity of the network and formation of bulk water droplets within the films. In addition, the effects of cross-linking on film disassembly by 1,4-dithiothreitol (DTT) are found to be insignificant despite the alteration in film rigidity. Mouse fibroblast cells and smooth muscle cells are used to study the effect of cross-linking on cell adhesion and cell transfection activity. In vitro transfection activity up to seven days is quantified using secreted alkaline phosphatase (SEAP) DNA. Film cross-linking is found to enhance cell adhesion and prolong the duration of cellular transfection. These results contribute to the development of bioreducible polymer coatings for localized gene delivery.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据