4.5 Article

Modifying a Proton Conductive Membrane by Embedding a Barrier

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 114, 期 41, 页码 13121-13127

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp104514t

关键词

-

资金

  1. National Natural Science Foundation of China [20974106, 20636050]
  2. National Natural Science Funds
  3. NSFC-KOSEF [F01-2009-000-10171-0, 20911140273]
  4. National Basic Research Program of China [2009CB623403]
  5. Specialized Research Fund for the Doctoral Program of Higher Education [200803580015]
  6. China Postdoctoral Science Foundation [20090460060]

向作者/读者索取更多资源

For development of proton conductive membranes, it is a difficult dilemma to balance proton conductivity and methanol permeability; however, this research proposes a simple strategy to solve this problem, i.e., embedding a proton Conductive barrier into the perflorosulfonated matrix. The strategy is exemplified by embedding the amphoteric sulfonated poly(phthalazinone ether sulfone kentone) (SPPESK) into a semicrystalline perflorosulfonic acid polymer matrix (FSP). After being annealed, the domain of SPPESK is converted to the barrier. Two acid-base interactions constitute the barrier for both the transfer of protons and the blockage of methanol, respectively. On one hand, poorly hydrophilic ionic acid-base interactions (-SO3-...NH+-) are formed between sulfonic acid group and phthalazinone group through annealing and are use for methanol blocking. On the other hand, more hydrophilic hydrogen-bonded acid-base interaction (-SO3H...(H2O)(n)...N-, n <= 3) can also be formed under hydrated condition and facilitate proton transport according to the Grotthuss-type mechanism. As a result, the final membrane exhibits an extremely low methanol permeability (30% of that of Nafion-112) and an excellent fuel cell performance (as compared with Nafion-112 at 80 degrees C).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据