4.5 Article

Noncovalent Polymerization and Assembly in Water Promoted by Thermodynamic Incompatibility

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 114, 期 32, 页码 10357-10367

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp103143x

关键词

-

资金

  1. U.S. Environmental Protection Agency [X-83232501-0]
  2. NSF-CMMI [0727491]
  3. NSF [0845686]
  4. Syracuse Biomaterials Institute
  5. Directorate For Engineering
  6. Div Of Civil, Mechanical, & Manufact Inn [0845686] Funding Source: National Science Foundation
  7. Directorate For Engineering
  8. Div Of Civil, Mechanical, & Manufact Inn [0727491] Funding Source: National Science Foundation

向作者/读者索取更多资源

This work studies the phase separations between polymers and a small molecule in a common aqueous solution that do not have well-defined hydrophobic hydrophilic separation. In addition to poly(acrylamide) (PAAm) and poly(vinyl alcohol) (PVA), poly(vinyl pyrrolidone) (PVP) also promotes liquid crystal (LC) droplet formation by disodium cromoglycate (5'DSCG) solvated in water. In the presence of these polymers, the concentration of 5'DSCG needed for forming LC droplets is substantially lower than that needed for forming an LC phase by 5'DSCG alone. To define the concentration ranges that 5'DSCG molecules form liquid crystals (either as droplets or as an isotropic-LC mixture), we constructed ternary phase diagrams for 5'DSCG, water, and a polymer PVA, PVP, or PAAm. We discovered that MAID with high molecular weight promotes LC droplet formation by 5'DSCG more effectively than PAAm with low molecular weight. At the same weight percentage, long-chain PAAm can cause 5'DSCG to form LC droplets in water, whereas short-chain PAAm does not. Poly(vinyl pyrrolidone) (PVP), which has functional groups that are more dissimilar to 5'DSCG than PVA and PAAm, promotes LC droplet formation by 5'DSCG more effectively than either of the other two polymers. Additionally, small angle neutron scattering data revealed that the assembly structure of 5'DSCG promoted by the presence of PVA is similar to the thread structure formed by 5'DSCG alone. Together, these results reveal how noncovalent polymerization can be promoted by mixing thermodynamically incompatible molecules and elucidate the basic knowledge of nonamphiphilic colloidal science.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据