4.5 Article

Gas-Phase Structure and Fragmentation Pathways of Singly Protonated Peptides with N-Terminal Arginine

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 114, 期 46, 页码 15092-15105

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp108452y

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft [SU 244/3-1]
  2. Landesstiftung Baden-Wurttemberg [P-LS-Prot/57]

向作者/读者索取更多资源

The gas-phase structures and fragmentation pathways of the singly protonated peptide arginylglycylaspartic acid (RGD) are investigated by means of collision-induced-dissociation (CID) and detailed molecular mechanics and density functional theory (DFT) calculations. It is demonstrated that despite the ionizing proton being strongly sequestered at the guanidine group, protonated ROD can easily be fragmented on charge directed fragmentation pathways. This is due to facile mobilization of the C-terminal or aspartic acid COOH protons thereby generating salt-bridge (SB) stabilized structures. These SB intermediates can directly fragment to generate b(2) ions or facilely rearrange to form anhydrides from which both b(2) and b(2)+H2O fragments can be formed. The salt-bridge stabilized and anhydride transition structures (TSs) necessary to form b(2) and b(2)+H2O are much lower in energy than their traditional charge solvated counterparts. These mechanisms provide compelling evidence of the role of SB and anhydride structures in protonated peptide fragmentation which complements and supports our recent findings for tryptic systems (Bythell, B. J.; Suhai, S.; Somogyi, A.; Paizs, B. J. Am. Chem. Soc. 2009, 131, 14057-14065.). In addition to these findings we also report on the mechanisms for the formation of the b(1) ion, neutral loss (H2O, NH3, guanidine) fragment ions, and the d(3) ion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据