4.5 Article

Reaction Mechanism of the Trinuclear Zinc Enzyme Phospholipase C: A Density Functional Theory Study

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 114, 期 7, 页码 2533-2540

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp910992f

关键词

-

资金

  1. Swedish National Research Council
  2. Carl Trygger Foundation
  3. National Natural Science Foundation of China [20733002, 20873008]

向作者/读者索取更多资源

Phosphatidylcholine-preferring phospholipase C is a trinuclear zinc-dependent phosphodiesterase, catalyzing the hydrolysis of choline phospholipids. In the present study, density functional theory is used to investigate the reaction mechanism of this enzyme. Two possible mechanistic scenarios were considered with a model of the active site designed on the basis of the high resolution X-ray crystal structure of the native enzyme. The calculations show that a Zn1 and Zn3 bridging hydroxide rather than a Zn1 coordinated water molecule performs the nucleophilic attack on the phosphorus center. Simultaneously, Zn2 activates a water molecule to protonate the leaving group. In the following step, the newly generated Zn2 bound hydroxide makes the reverse attack, resulting in the regeneration of the bridging hydroxide. The first step is calculated to be rate-limiting with a barrier of 17.3 kcal/mol, in good agreement with experimental kinetic studies. The zinc ions are suggested to orient the substrate for nucleophilic attack and provide electrostatic stabilization to the dianionic penta-coordinated trigonal bipyramidal transition states, thereby lowering the barrier.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据