4.5 Article

Pressure Perturbation Calorimetry and the Thermodynamics of Noncovalent Interactions in Water: Comparison of Protein-Protein, Protein-Ligand, and Cyclodextrin-Adamantane Complexes

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 114, 期 49, 页码 16228-16235

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp107110t

关键词

-

资金

  1. BBSRC
  2. EPSRC
  3. Biotechnology and Biological Sciences Research Council [B20089] Funding Source: researchfish

向作者/读者索取更多资源

Pressure perturbation calorimetry measurements on a range of cyclodextrin adamantane, protein ligand (lysozyme-(GlcNac)(3) and ribonuclease-2'CMP) and protein-protein (cytochrome c peroxidase-pseudoazurin) complexes in aqueous solution show consistent reductions in thermal expansibilities compared to the uncomplexed molecules. Thermodynamic data for binding, obtained by titration calorimetry, are also reported. Changes in molar expansibilities can be related to the decrease in solvation during complexation. Although reasonable estimates for numbers of displaced water molecules may be obtained in the case of rigid cyclodextrin-adamantane complexes, protein expansibility data are less easily reconciled. Comparison of data from this wide range of systems indicates that effects are not simply related to changes in solvent-accessible surface area, but may also involve changes in macromolecular dynamics and flexibility. This adds to the growing consensus that understanding thermodynamic parameters associated with noncovalent interactions requires consideration of changes in internal macromolecular fluctuations and dynamics that may not be related to surface area-related solvation effects alone.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据