4.5 Article

Bifurcated Hydrogen Bonds Stabilize Fibrils of Poly(L-glutamic) Acid

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 114, 期 24, 页码 8278-8283

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp102440n

关键词

-

资金

  1. Polish Ministry of Education and Science [NN 301 101236]

向作者/读者索取更多资源

Model fibrillating homopolypeptides have been providing many insightful analogies to the clinically important phenomena of protein misfolding and amyloidogenesis. Here we show that the beta(2) structural variant of poly(L-glutamic) acid forms fibrils with an amyloid-like morphology, ability to enhance fluorescence of thioflavin T, and seeding properties. The beta(2) fibrils are formed upon heating of aqueous solutions of alpha-helical poly(L-glutamic) acid, which leads to a significant increase of pD (pH) of unbuffered samples and a concomitant precipitation of fibrils with unusual infrared traits: amide I' band being dramatically red-shifted to 1596 cm(-1), and the -COOD stretching band split into two peaks around 1730 and 1719 cm(-1). We are proposing that formation of three-center hydrogen bonds involving bifurcated peptide carbonyl acceptors (>C=O) and main chains' NH, as well as side chains' -COOH proton donors is likely to underlie the observed infrared characteristics of beta(2) fibrils. Such bonds provide additional conformational constraints in a tightly packed environment around glutamate side chains resulting in the decreased overall acidity of the polypeptide. The presence of bifurcated hydrogen bonds in amyloid fibrils may be an overlooked factor in fibrils' robustness, thermodynamic stability and the ability to propagate their own growth.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据