4.5 Article

On the Range of Water Structure Models Compatible with X-ray and Neutron Diffraction Data

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 113, 期 18, 页码 6246-6255

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp9007619

关键词

-

资金

  1. Swedish Foundation for Strategic Research
  2. Swedish Research Council
  3. National Science Foundation (US) [CHE-0518637, CHE-0431425]
  4. Swedish NSC

向作者/读者索取更多资源

We use the reverse Monte Carlo (RMC) method to critically evaluate the structural information content of diffraction data on bulk water by fitting simultaneously or separately to X-ray and neutron data; the O-H and H-H, but not the O-O, pair-correlation functions (PCFs) are well-described by the neutron data alone. Enforcing at the same time different H-bonding constraints, we generate four topologically different structure models of liquid water, including a simple mixture model, that all equally well reproduce the diffraction data. Although earlier work [Leetmaa, M.; et a]. J. Chem. Phys. 2008, 129, 084502] has focused on tetrahedrality in the H-bond network in liquid water, we show here that, even for the O-O-O three-body correlation, tetrahedrality is not strictly defined by the data. We analyze how well two popular MD models (TIP4P-pol2 and SPC/E) reproduce the neutron data in q-space and find differences in important aspects from the experiment. From the RMC fits, we obtain pair-correlation functions (PCFs) that are in optimal agreement with the diffraction data but still show a surprisingly strong variability both in position and height of the first intermolecular (H-bonding) O-H peak. We conclude that, although diffraction data impose important constraints on the range of possible water structures, additional data are needed to narrow the range of possible structure models.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据