4.5 Article

Unusual Temperature Dependence of Photosynthetic Electron Transfer due to Protein Dynamics

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 113, 期 3, 页码 818-824

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp807468c

关键词

-

资金

  1. NSF [MCB0642260, MCB064002, BIR9512970]

向作者/读者索取更多资源

The initial electron transfer rate and protein dynamics in wild type and five mutant reaction centers from Rhodobacter sphaeroides have been studied as a function of temperature (10-295 K). Detailed kinetic measurements of initial electron transfer in Rhodobacter sphaeroides reaction centers can be quantitatively described by a reaction diffusion formalism at all temperatures from 10 to 295 K. In this model, the time course of electron transfer is determined by the ability of the protein to interconvert between conformations until one is found where the activation energy for electron transfer is near zero. In reaction centers with a free energy for electron transfer similar to wild type, the reaction proceeds at least as fast at cryogenic temperatures as at room temperature. This may be because interconversion between conformations at low temperature is restricted to conformations with near zero activation energy (it is not possible to diffuse away from this region of conformational space). In contrast, mutants with a decreased free energy initially find themselves in conformations unfavorable for electron transfer and require more extensive conformational diffusion to achieve a low activation energy conformation. They therefore undergo electron transfer more slowly at 10 K vs 295 K.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据