4.5 Article

Liquid Crystal Phase Transitions in Systems of Colloidal Platelets with Bimodal Shape Distribution

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 113, 期 41, 页码 13476-13484

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp902858k

关键词

-

资金

  1. Royal Netherlands Academy of Arts and Sciences
  2. Schlumberger Limited Company
  3. Ramsay Memorial Fellowship Trust

向作者/读者索取更多资源

We have studied a system of polydisperse, charged colloidal gibbsite platelets with a bimodal distribution in the particle aspect ratio. We observe a density inversion of the coexisting isotropic and nematic phases as well as a three-phase equilibrium involving a lower density nematic phase, an isotropic phase of intermediate density, and a higher density columnar phase. To relate these phenomena to the bimodality of the shape distribution, we have calculated the liquid crystal phase behavior of binary mixtures of thick and thin hard platelets for various thickness ratios. The predictions are based on the Onsager-Parsons theory for the isotropic-nematic (I-N) transition combined with a modified Lennard-Jones-Devonshire cell theory for the columnar (C) state. For sufficiently large thickness ratios, the phase diagram features an I-N density inversion and triphasic I-N-C equilibrium, in agreement with experiment. The density inversion can be attributed to a marked shape fractionation among the coexisting phases with the thick species accumulating in the isotropic phase. At high concentrations, the theory predicts a coexistence between two columnar phases with distinctly different concentrations. In experiment, however, the demixing transition is pre-empted by a transition to a kinetically arrested, glassy state with structural features resembling a columnar phase.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据