4.5 Article

Modeling, Structural, and Spectroscopic Studies of Lanthanide-Organic Frameworks

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 113, 期 36, 页码 12181-12188

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp9022629

关键词

-

资金

  1. CAPES
  2. CNPq (Brazilian agencies) through the PADCT
  3. IMMC (Instituto do Milenio de Materiais Complexos)
  4. Fundacao para a Ciencia e a Tecnologia [PPCDT/QUI/58377/2004]

向作者/读者索取更多资源

In this paper, we report the hydrothermal synthesis of three lanthanide-organic framework materials using as primary building blocks the metallic centers Eu3+, Tb3+, and Gd3+ and residues of mellitic acid: [Ln(2)(MELL)(H2O)(6)] (where Ln(3+) = Eu3+, Tb3+, and Gd-3; hereafter designated as (1), (2) and (3)). Structural characterization encompasses single-crystal X-ray diffraction studies, thermal analysis, and vibrational spectroscopy, plus detailed investigations on the experimental and predicted (using the Sparkle/AM1 model) photophysical luminescent properties. Crystallographic investigations showed that the compounds are all isostructural, crystallizing in the orthorhombic space group Pnnm and structurally identical to the lanthanum 3D material reported by the group of Williams. (2) is highly photoluminescent, as confirmed by the measured quantum yield and lifetime (37% and 0.74 ms, respectively). The intensity parameters (Omega(2), Omega(4), and Omega(6)) of (1) were first calculated using the Sparkle/AM1 structures and then employed in the calculation of the rates of energy transfer (W-ET) and back-transfer (W-BT). Intensity Parameters were used to predict the radiative decay rate. The calculated quantum yield derived from the Sparkle/AM1 structures was approximately 16%, and the experimental value was 8%. We attribute the registered differences to the fact that the theoretical model does not consider the vibronic coupling with O-H oscillators from coordinated water molecules. These results clearly attest for the efficacy of the theoretical models employed in all calculations and open a new window of interesting possibilities for the design in silico of novel and highly efficient lanthanide-organic frameworks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据