4.5 Article

Fluorescence Spectroscopic Investigation To Identify the Micelle to Gel Transition of Aqueous Triblock Copolymer Solutions

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 113, 期 15, 页码 5117-5127

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp809826c

关键词

-

资金

  1. Chemistry Group, BARC

向作者/读者索取更多资源

Steady-state and time-resolved fluorescence anisotropy measurements using probes coumarin 153 (C153) and 4-heptadecylumbelliferon (HUF) have been carried out to understand the micelle to gel transition of an aqueous triblock copolymer P123 ((EO)(20)-(PO)(70)-(EO)(20)) (EO = ethylene oxide; PO = propylene oxide) solution. Anisotropy results with a normal fluorescent probe, C153, do not show a characteristic change due to the micelle to gel transition. However, the probe HUF having a long hydrocarbon chain that helps its strong association with the micelle shows an increase in anisotropy above the sol-gel transition point. This difference has been explained as invoking a substantial contribution from the micellar structural fluctuations to the depolarization of HUF as its hydrocarbon chain is embedded in the micellar structure, which is not sensed significantly by the normal probe C153. That the extent of change in anisotropy for HUF upon gelation is not that large is possibly caused by the collective motion of the physically interconnected nodes, as observed from the dynamic light scattering studies, which acts in favor of a relatively faster depolarization in the gel phase. Similar studies in other copolymers, such as P85 ((EO)(26)-(PO)(40)-(EO)(26)) and F127 ((EC)(100)-(PO)(65)-(EO)(100)), further demonstrate the potential of probes latched with hydrocarbon chains in displaying a characteristic change for the micelle to gel transition which otherwise remains obscured for normal fluorescent probes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据