4.5 Article

Excited-State Modeling of the Astaxanthin Dimer Predicts a Minor Contribution from Exciton Coupling to the Bathochromic Shift in Crustacyanin

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 113, 期 15, 页码 5311-5317

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp810754s

关键词

-

资金

  1. Swedish Research Council
  2. Carl Trygger Foundation

向作者/读者索取更多资源

The >0.50 eV bathochromic shift of the absorption by the carotenoid astaxanthin in crustacyanin, the carotenoprotein responsible for the coloration of lobster shell, is believed to result from ground-state polarization of the chromophore and/or exciton coupling between the two chromophores of each protein subunit. Here, the contribution of exciton coupling to the shift is quantified using quantum chemical calculations that do not rely on the dipole-dipole approximation but rather consider the full astaxanthin dimer in the geometry relevant for the protein-bound state. Employing a variety of methods, it is found that the exciton coupling amounts to 0.04 eV only. Furthermore, even when more closely aggregated dimers than the one in the protein are considered, the predicted couplings remain small (0.05-0.09 eV). These findings demonstrate that the bathochromic shift cannot be explained in terms of exciton coupling. It is therefore argued that polarization is likely to be the dominant mechanism, a notion supported by the fact that calculations carried out at the same levels of theory identify a scenario (hydrogen bonding with a histidine residue) whose contribution to the shift vastly exceeds that of exciton coupling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据