4.5 Article

Finding transition pathways using the string method with swarms of trajectories

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 112, 期 11, 页码 3432-3440

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp0777059

关键词

-

资金

  1. NCI NIH HHS [R01 CA093577-05, R01 CA093577, CA-93577] Funding Source: Medline

向作者/读者索取更多资源

An approach to find transition pathways in complex systems is presented. The method, which is related to the string method in collective variables of Maragliano et al. (J. Chem. Phys. 2006, 125, 024106), is conceptually simple and straightforward to implement. It consists of refining a putative transition path in the multidimensional space supported by a set of collective variables using the average dynamic drift of those variables. This drift is estimated on-the-fly via swarms of short unbiased trajectories started at different points along the path. Successive iterations of this algorithm, which can be naturally distributed over many computer nodes with negligible interprocessor communication, refine an initial trial path toward the most probable transition path (MPTP) between two stable basins. The method is first tested by determining the pathway for the C-7eq to C-7ax transition in an all-atom model of the alanine dipeptide in vacuum, which has been studied previously with the string method in collective variables. A transition path is found with a committor distribution peaked at 1/2 near the free energy maximum, in accord with previous results. Last, the method is applied to the allosteric conformational change in the nitrogen regulatory protein C (NtrC), represented here with a two-state elastic network model. Even though more than 550 collective variables are used to describe the conformational change, the path converges rapidly. Again, the committor distribution is found to be peaked around 1/2 near the free energy maximum between the two stable states, confirming that a genuine transition state has been localized in this complex multidimensional system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据