4.5 Article

Effect of polymer microenvironment on excitation energy migration and transfer

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 112, 期 14, 页码 4213-4222

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp0769577

关键词

-

向作者/读者索取更多资源

Excitation energy transfer between the dye pair acriflavine (donor) to rhodamine-6G (acceptor) in various polymers [polyvinyl alcohol (PVA), cellulose acetate, and polymethyl methacrylate (PMMA)] was studied using steady-state and time-resolved fluorescence spectroscopy at room temperature. In all these polymers, at higher acceptor concentrations, direct energy transfer from acriflavine to rhodamine-6G followed the Forster theory, which is indicated by the agreement in the values of the observed critical transfer distance with that calculated from spectral overlap. On the other hand, at low acceptor concentrations, the excitation energy migration influences the kinetics, resulting in a significantly higher value of the observed critical transfer distance, which is explained on the basis of Loring et al. (Loring, R. F.; Anderson, H. C.; Fayer, M. D. J. Chem. Phys. 1984, 80, 5731-5744) and Huber (Huber, D. L. Phys. Rev. B: Condens. Matter Mater. Phys. 1979, 20 2307-2314) theories. It was observed that the spectral overlap for donor-donor transport (excitation migration) and donor-acceptor transfer (energy transfer) and thereby other energy transfer parameters were influenced by the microenvironment of the polymers. The efficiency of energy transfer (eta) was the highest in PMMA and the lowest in PVA. Further, the study of acceptor dynamics under energy transfer showed that the rise time of the acceptor also depends on the nature of the polymer microenvironment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据