4.5 Article

Single-chain and aggregation properties of semiconducting polymer solutions investigated by coarse-grained Langevin dynamics simulation

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 112, 期 37, 页码 11479-11489

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp077054g

关键词

-

资金

  1. MOE [96-2752-E-007-006-PAE]

向作者/读者索取更多资源

A coarse-grained (CG) model and Langevin dynamics scheme are proposed to investigate the material properties in dilute solution of a model semiconducting conjugated polymer, poly(2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV). While the intra- and intermolecular potentials for the CG particle (currently, a monomer unit) were determined from the molecular dynamics (MD) simulation of a united atomistic model, fluctuation-dissipation forces arising from the treatment of a solvent field were self-consistently constructed from the measured particle diffusivity in a given solvent (i.e., chloroform or toluene) through the atomistic MD simulation. It is shown that the resultant Langevin dynamics simulation, which is substantially more efficient than the counterpart MD simulation of the same CG model, is able to capture the dynamic (such as center-of-mass diffusivity) as well as the structural (such as radius of gyration) features of the investigated polymer solutions. Essential material properties that can now be directly studied include the following: Scaling exponents for estimating the exact solvent qualities were, for the first time, determined for the two solvent systems investigated; the persistence length obtained was also noted to be in excellent agreement with early experimental estimations. Preliminary observations on the supramolecular aggregation properties were in good agreement with the general observations from a wide range of recent experiments, and shed light on the essential impact of solvent quality on the supramolecular aggregation structures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据