4.5 Article

Ionization condition of lithium ionic liquid electrolytes under the solvation effect of liquid and solid solvents

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 112, 期 11, 页码 3357-3364

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp711625r

关键词

-

向作者/读者索取更多资源

Ionization condition and ionic structures of the lithium ionic liquid electrolytes, LiTFSI/EMI-TFSI/(PEG or silica), were investigated through the measurements of ionic conductivity and diffusion coefficient. The size of the hydrodynamic lithium species (r(Li)) evaluated from the Stokes-Einstein equation was 0.90 nm before gelation with the PEG or silica. This reveals that the TFSI- anions from the solvent are coordinated on Li+ for solvation, forming, for example, Li(TFSI)(4)(3-) and Li(TFSI)(2)(-) in the electrolyte solution. By the dispersion of PEG for gelation, r(Li) increased up to 1.8 nm with the 10 wt % of PEG. This indicates that the lithium species is directly interacted with the oxygen sites on the polymer chains and the lithium species migrate, reflecting the polymer by hopping from site to site. In case of the silica dispersion, r(Li) decreased to 0.7 nm at 10 wt % silica. Although the silica surface with silanol groups fundamentally attracts Li+, the lithium does not migrate from site to site on the silica surface as in the gel of the polymer and follows random walk behavior in the network of the liquid-phase pathways in the two-phase gel. In the process, that solvated TFSI- anions are partially removed may be due to the attractive effect of H+, which was dissociated from the silanol group. It is concluded that the dispersed silica is effective to modify the hydrodynamic lithium species to be appropriate for charge transport as reducing the size and anionic charge of Li(TFSI)(4)(3-) by removing one or two TFSI- anions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据