4.5 Article

Establishing effective simulation protocols for β- and α/β-peptides.: II.: Molecular mechanical (MM) model for a cyclic β-residue

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 112, 期 17, 页码 5439-5448

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp077601y

关键词

-

向作者/读者索取更多资源

All-atom molecular mechanical (MM) force field parameters are developed for a cyclic P-amino acid, aminocyclo-pentane-carboxylic acid (ACPC), using a multi-objective evolutionary algorithm. The MM model is benchmarked using several short, ACPC-containing alpha/beta-peptides in water and methanol with SCC-DFTB (self consistent charge-density functional tight binding)/MM simulations as the reference. Satisfactory agreements are found between the MM and SCC-DFTB/MM results regarding the distribution of key dihedral angles for the tetra-alpha/beta-peptide in water. For the octa-alpha/beta-peptide in methanol, the MM and SCC-DFTB/ MM simulations predict the 11- and 14/15-helical form as the more stable conformation, respectively; however, the two helical forms are very close in energy (2-4 kcal/mol) at both theoretical levels, which is also the conclusion from recent NMR experiments. As the first application, the MM model is applied to an alpha/beta-pentadeca-peptide in water with both explicit and implicit solvent models. The stability of the peptide is sensitive to the starting configuration in the explicit solvent simulations due to their limited length (similar to 10-40 ns). Multiple (similar to 20 x 20 ns) implicit solvent simulations consistently show that the 14/15-helix is the predominant conformation of this peptide, although substantially different conformations are also accessible. The calculated nuclear Overhauser effect (NOE) values averaged over different trajectories are consistent with experimental data, which emphasizes the importance of considering conformational heterogeneity in such comparisons for highly dynamical peptides.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据