4.5 Article

Theoretical modeling of enzyme reactions: The thermodynamics of formation of compound in horseradish peroxidase

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 112, 期 10, 页码 3184-3192

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp0774692

关键词

-

向作者/读者索取更多资源

In this paper, by using the perturbed matrix method (PMM) in combination with basic statistical mechanical relations both based on nanosecond time-scale molecular dynamics (MD) simulations, we quantitatively address the thermodynamics of compound 0 (Cpd 0) formation in horseradish peroxidase (HRP) enzyme. Our results, in the same trend of low-temperature experimental data, obtained in cryoenzymology studies indicate that such a reaction can be described essentially as a stepwise spontaneous process: a first step mechanically constrained, strongly exothermic proton transfer from the heme-H2O2 complex to the conserved His42, followed by a solvent-protein relaxation involving a large entropy increase. Critical evaluation of PMM/MD data also reveals the crucial role played by specific residues in the reaction pocket and, more in general, by the conformational fluctuations of the overall environment in physiological conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据