4.5 Article

Determinants for membrane fusion induced by cholesterol-modified DNA zippers

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 112, 期 28, 页码 8264-8274

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp802005b

关键词

-

向作者/读者索取更多资源

Intracellular membrane fusion is coordinated by membrane-anchored fusion proteins. The cytosolic domains of these proteins form a specific complex that pulls the membranes into close proximity. Although some results indicate that membrane merger can be accomplished solely on the basis of proximity, others emphasize the importance of bilayer stress exerted by transmembrane peptides. In a reductionist approach, we recently introduced a fusion machinery built from cholesterol-modified DNA zippers to mimic fusion protein function. Aiming to further optimize DNA-mediated fusion, we varied in this work length and number of DNA strands and used either one or two cholesterol groups for membrane anchoring of DNA. The results reveal that the use of two cholesterol anchors is essential to prevent cDNA strands from shuttling to the same membrane, which leads to vesicle release instead of membrane merger. A surface coverage of 6-13 DNA strands was a precondition for efficient fusion, whereas fusion was insensitive to DNA length within the tested range. Besides lipid mixing, we also demonstrate DNA-induced content mixing of large unilamellar vesicles composed of the most abundant cellular lipids phosphatidylcholine, phosphatidylethanolamine, cholesterol, and sphingomyelin. Taken together, DNA-mediated fusion emerges as a promising tool for the functionalization of artificial and biological membranes and may help to dissect the functional role of fusion proteins.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据