4.5 Article

Role of length-dependent stability of collagen-like peptides

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 112, 期 5, 页码 1533-1539

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp0728297

关键词

-

向作者/读者索取更多资源

Understanding the structure, folding, and stability of collagen is complex because of its length and variations in the amino acid (AA) sequence composition. It is well known that the basic constituent of the collagen helix is the triplet repeating sequence of the form Gly-X-AA-Y-AA. On the basis of previous models and with the frequency of occurrence of the triplets, the ((Gly-Pro-Hyp)(n))3 (where n is the number of triplets) sequence replicate has been chosen as the model for the most stable form of the collagen-like sequence. With a view to understand the role of sequence length (or the number of triplets) on the stability of collagen, molecular dynamics simulations have been carried out by varying the number of triplet units on the model collagen-like peptides. The results reveal that five triplets are required to form the stable triple helix. Further analysis shows that the intermolecular structural rigidity of the imino acid residues, hydrogen bonding, and water structure around the three chains of the triple helix play the dominant roles on its structure, folding, and stabilization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据