4.5 Article

Microsecond molecular dynamics simulation shows effect of slow loop dynamics on backbone amide order parameters of proteins

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 112, 期 19, 页码 6155-6158

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp077018h

关键词

-

资金

  1. NIGMS NIH HHS [R01 GM050291, GM50291, R01 GM052018, GM52018, R01 GM052018-12] Funding Source: Medline

向作者/读者索取更多资源

A molecular-level understanding of the function of a protein requires knowledge of both its structural and dynamic properties. NMR spectroscopy allows the measurement of generalized order parameters that provide an atomistic description of picosecond and nanosecond fluctuations in protein structure. Molecular dynamics (MD) simulation provides a complementary approach to the study of protein dynamics on similar,time scales. Comparisons between NMR spectroscopy and MD simulations can be used to interpret experimental results and to improve the quality of simulation-related force fields and integration methods. However, apparent systematic discrepancies between order parameters extracted from simulations and experiments are common, particularly for elements of noncanonical secondary structure. In this paper, results from a 1.2 mu s explicit solvent MD simulation of the protein ubiquitin are compared with previously determined backbone order parameters derived from NMR relaxation experiments [Tjandra, N.; Feller, S. E.; Pastor, R. W.; Bax, A. J. Am. Chem. Soc. 1995, 117, 12562-12566]. The simulation reveals fluctuations in three loop regions that occur on time scales comparable to or longer than that of the overall rotational diffusion of ubiquitin and whose effects would not be apparent in experimentally derived order parameters. A coupled analysis of internal and overall motion yields simulated order parameters substantially closer to the experimentally determined values than is the case for a conventional analysis of internal motion alone. Improved agreement between simulation and experiment also is encouraging from the viewpoint of assessing the accuracy of long MD simulations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据