4.5 Review

Equilibrium, Photophysical, Photochemical, and Quantum Chemical Examination of Anionic Mercury(II) Mono- and Bisporphyrins

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 112, 期 46, 页码 14509-14524

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp804039s

关键词

-

资金

  1. Hungarian Scientific Research Fund [K63494, T049257]

向作者/读者索取更多资源

Mercury(II) ion and 5,10,15,20-tetrakis(parasulfonato-phenyl)porphyrin anion can form 1:1, 2:2, and 3:2 (metal ion/porphyrin) out-of-plane (OOP) complexes, from which Hg2P28- has not been identified until now. Identification of this species significantly promoted the confirmation of the composition and the precise elucidation of the equilibrium of Hg3P26-. Since the formation of each complex is too fast, their kinetic behavior was studied from the side of dissociation. The rate-determining step in dissociations, as well as in the formation of the 2:2 complex, that is. the dimerization of 1:1 complex, proved to be virtually first-order under these conditions, while the consecutive formations of HgP4- and Hg3P26- are second-order reactions. The equilibria can be spectrophotometric ally investigated because the Soret- as well as the Q-absorption bands of the free-base ligand are more and more red-shifted in the series of 1:1, 2:2, and 3:2 complexes. and the split of Q-bands disappears as the singlet-1 excited states become degenerated in the case of bisporphyrins, the bands broaden, especially in the longer-wavelength region of the spectra. The quantum yield and the lifetime of S-1-fluorescence from the macrocycle is decreased by the insertion of a mercury(II) ion due to distortion, and in bisporphyrins the luminescence totally ceases because their more complicated structure promotes other ways of energy dissipation. The lifetime of the triplet excited-state is also reduced by metalation. The transient absorption measured upon excitation of Hg(3)p(2)(6-) probably originates from Hg2P28- formed by efficient photodissocation during the laser pulse. This photoinduced dissociation is characteristic to out-of-plane complexes. but in metallo-monoporphyrins it needs the energetically higher Soret-excitation; in bisporphyrins, it can take place during irradiation at the longer Q-wavelengths. Investigation of the intramolecular photoredox reactions has proved that for the increased efficiency of the indirect photoinduced LMCT, not the redox potential, but the position of the metal center is responsible. The two orders of magnitude higher photoredux quantum yield for the 3:2 complex, compared to that of the 2:2 species, can be explained by the repulsive effect of the inner mercury(II) ion pushing the other two farther out of the ligand cavity. In bisporphyrins the second excited states are photochemically more reactive than the first ones, while most of the photochemical processes of HgP4- originate from the first excited state. According to Our quantum chemical calculations, the mercury(II) ion causes the expansion of the porphyrin-cavity therefore its out-of-plane position is smaller than the value expected based on its ionic radius. In the hitherto unknown 2:2 dirtier two 1:1 saucer-shaped monomers are kept together by secondary forces, mostly by pi-pi. interaction, but their relative arrangement was not unequivocally determined by the two DFT functionals used. The arrangements with a symmetry axis or plane perpendicular to both rings are not favored; instead, the two monomers are shifted along the porphyrin planes, either in a Hg-P-Hg-P or a Hg-P-P-Hg order. Our time-dependent density functional theory (TD-DFT) calculations indicate that the electronic spectra are not very sensitive to the structure of the dimer, even though the environment of the porpyrin rings is quite different if one of the metal ions is between or outside of both macrocycles. The calculated spectral shifts agree only partially with the experimental data. The TD-DFT calculations suggest that the chromophores are not fully independent in the bisporphyrins and that the observed spectral shift cannot be uniquely assigned to the geometrical distortion of the porphyrin macrocyle.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据