4.7 Article

Gravitational wave detector with cosmological reach

期刊

PHYSICAL REVIEW D
卷 91, 期 8, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.91.082001

关键词

-

资金

  1. National Science Foundation [PHY-0757058, PHY-1352511, PHY-0823459, PHY-1068809]
  2. Direct For Mathematical & Physical Scien
  3. Division Of Physics [1352511] Funding Source: National Science Foundation

向作者/读者索取更多资源

Twenty years ago, construction began on the Laser Interferometer Gravitational-wave Observatory (LIGO). Advanced LIGO, with a factor of 10 better design sensitivity than Initial LIGO, will begin taking data this year, and should soon make detections a monthly occurrence. While Advanced LIGO promises to make first detections of gravitational waves from the nearby universe, an additional factor of 10 increase in sensitivity would put exciting science targets within reach by providing observations of binary black hole inspirals throughout most of the history of star formation, and high signal to noise observations of nearby events. Design studies for future detectors to date rely on significant technological advances that are futuristic and risky. In this paper we propose a different direction. We resurrect the idea of using longer arm lengths coupled with largely proven technologies. Since the major noise sources that limit gravitational wave detectors do not scale trivially with the length of the detector, we study their impact and find that 40 km arm lengths are nearly optimal, and can incorporate currently available technologies to detect gravitational wave sources at cosmological distances (z greater than or similar to 7).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据