4.6 Article

A Quantum Dynamics Study of the Ultrafast Relaxation in a Prototypical Cu(I)-Phenanthroline

期刊

JOURNAL OF PHYSICAL CHEMISTRY A
卷 118, 期 42, 页码 9861-9869

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp509728m

关键词

-

资金

  1. Swiss National Science Foundation [200021-137717]
  2. Swiss National Science Foundation (SNF) [200021_137717] Funding Source: Swiss National Science Foundation (SNF)

向作者/读者索取更多资源

The ultrafast nonadiabatic dynamics of a prototypical Cu(I)phenanthroline complex, [Cu(dmp)(2)](+) (dmp = 2,9-dimethyl-1,10-phenanthroline), initiated after photoexcitation into the optically bright metal-to-ligand charge-transfer (MLCT) state (S-3) is investigated using quantum nuclear dynamics. In agreement with recent experimental conclusions, we find that the system undergoes rapid (similar to 100 fs) internal conversion from S-3 into the S-2 and S-1 states at or near the FranckCondon (FC) geometry. This is preceded by a dynamic component with a time constant of similar to 400 fs, which corresponds to the flattening of the ligands associated with the pseudo JahnTeller distortion. Importantly, our simulations demonstrate that this latter aspect is in competition with subpicosecond intersystem crossing (ISC). The mechanism for ISC is shown to be a dynamic effect, in the sense that it arises from the system traversing the pseudo JahnTeller coordinate where the singlet and triplet states become degenerate, leading to efficient crossing. These first-principles quantum dynamics simulations, in conjunction with recent experiments, allow us to clearly resolve the mechanistic details of the ultrafast dynamics within [Cu(dmp)(2)](+), which have been disputed in the literature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据