4.6 Article

Desorption Kinetics of Methanol, Ethanol, and Water from Graphene

期刊

JOURNAL OF PHYSICAL CHEMISTRY A
卷 118, 期 37, 页码 8242-8250

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp501038z

关键词

-

资金

  1. U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences
  2. DOE's Office of Biological and Environmental Research
  3. DOE [DE-AC05-76RL01830]

向作者/读者索取更多资源

The desorption kinetics of methanol, ethanol, and water from graphene covered Pt(111) are investigated. The temperature programmed desorption (TPD) spectra for both methanol and ethanol have well-resolved first, second, third, and multilayer layer desorption peaks. The alignment of the leading edges is consistent with zero-order desorption kinetics from all layers. In contrast, for water, the first and second layers are not resolved. At low water coverages (<1 monolayer (ML)) the initial desorption leading edges are aligned but then fall out of alignment at higher temperatures. For thicker water layers (10-100 ML), the desorption leading edges are in alignment throughout the desorption of the film. The coverage dependence of the desorption behavoir suggests that at low water coverages the nonalignment of the desorption leading edges is due to water dewetting from the graphene substrate. Kinetic simulations reveal that the experimental results are consistent with zero-order desorption. The simulations also show that fractional order desorption kinetics would be readily apparent in the experimental TPD spectra.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据