4.6 Article

Water Accommodation and Desorption Kinetics on Ice

期刊

JOURNAL OF PHYSICAL CHEMISTRY A
卷 118, 期 22, 页码 3973-3979

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp503504e

关键词

-

资金

  1. Swedish Research Council
  2. Nordic Top-Level Research Initiative CRAICC
  3. Wenner-Gren Foundation

向作者/读者索取更多资源

The interaction of water vapor with ice remains incompletely understood despite its importance in environmental processes. A particular concern is the probability for water accommodation on the ice surface, for which results from earlier studies vary by more than 2 orders of magnitude. Here, we apply an environmental molecular beam method to directly determine water accommodation and desorption kinetics on ice. Short D2O gas pulses collide with H2O ice between 170 and 200 K, and a fraction of the adsorbed molecules desorbs within tens of milliseconds by first order kinetics. The bulk accommodation coefficient decreases nonlinearly with increasing temperature and reaches 0.41 +/- 0.18 at 200 K. The kinetics are well described by a model wherein water molecules adsorb in a surface state from which they either desorb or become incorporated into the bulk ice structure. The weakly bound surface state affects water accommodation on the ice surface with important implications for atmospheric cloud processes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据