4.6 Article

Accurate Determination of Barrier Height and Kinetics for the F + H2O → HF + OH Reaction

期刊

JOURNAL OF PHYSICAL CHEMISTRY A
卷 117, 期 36, 页码 8864-8872

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp4069448

关键词

-

资金

  1. Robert A. Welch Foundation [F-1283]
  2. Department of Energy, Office of Basic Energy Sciences [DE-FG02-07ER15884]
  3. Division Of Chemistry
  4. Direct For Mathematical & Physical Scien [1300945] Funding Source: National Science Foundation

向作者/读者索取更多资源

The reaction energy and barrier height of the title reaction are investigated using two high-level ab initio protocols, namely Focal Point Analysis (FPA) and modified High Accuracy Extrapolated Ab Initio Thermochemistry (HEAT) methods. It is concluded from these calculations that despite some multireference character, dynamic electron correlation plays a dominant role near the reaction barrier. Thus, the coupled-cluster method with higher excitations than singles and doubles gives a better description than the multireference configuration interaction method for the barrier height. The FPA and HEAT classical barrier heights, including the spin-orbit and other corrections, are 1.919 and 2.007 kcal/mol, respectively. The rate constants and H/D kinetic isotope effect for the title reaction are determined by semiclassical transition-state theory based on the anharmonic potential energy surface near the saddle point, and the agreement with experiment is excellent. The rate constants are also computed using a quasi-classical trajectory method on a global potential energy surface scaled to the FPA barrier height and a similar level of agreement with experimental data is obtained.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据