4.6 Article

What Can We Learn about Dispersion from the Conformer Surface of n-Pentane?

期刊

JOURNAL OF PHYSICAL CHEMISTRY A
卷 117, 期 14, 页码 3118-3132

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp401429u

关键词

-

资金

  1. Faculty of Chemistry at the Weizmann Institute of Science
  2. University of North Texas

向作者/读者索取更多资源

In earlier work [Gruzman, D.; Karton, A.; Martin, J. M. L. J. Phys. Chem. A 2009, 113, 11974], we showed that conformer energies in alkanes (and other systems) are highly dispersion-driven and that uncorrected DFT functionals fail badly at reproducing them, while simple empirical dispersion corrections tend to overcorrect. To gain greater insight into the nature of the phenomenon, we have mapped the torsional surface of n-pentane to 10-degree resolution at the CCSD(T)-F12 level near the basis set limit. The data obtained have been decomposed by order of perturbation theory, excitation level, and same-spin vs opposite-spin character. A large number of approximate electronic structure methods have been considered, as well as several empirical dispersion corrections. Our chief conclusions are as follows: (a) the effect of dispersion is dominated by same-spin correlation (or triplet-pair correlation, from a different perspective); (b) singlet-pair correlation is important for the surface, but qualitatively very dissimilar to the dispersion component; (c) single and double excitations beyond third order are essentially unimportant for this surface; (d) connected triple excitations do play a role but are statistically very similar to the MP2 singlet-pair correlation; (e) the form of the damping function is crucial for good performance of empirical dispersion corrections; (0 at least in the lower-energy regions, SCS-MP2 and especially MP2.5 perform very well; (g) novel spin-component scaled double hybrid functionals such as DSD-PBEP86-D2 acquit themselves very well for this problem.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据