4.6 Article

Heterogeneous Uptake and Adsorption of Gas-Phase Formic Acid on Oxide and Clay Particle Surfaces: The Roles of Surface Hydroxyl Groups and Adsorbed Water in Formic Acid Adsorption and the Impact of Formic Acid Adsorption on Water Uptake

期刊

JOURNAL OF PHYSICAL CHEMISTRY A
卷 117, 期 44, 页码 11316-11327

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp408169w

关键词

-

资金

  1. National Science Foundation [CHE-0952605, CHE-1305723]
  2. Direct For Mathematical & Physical Scien
  3. Division Of Chemistry [1062575] Funding Source: National Science Foundation

向作者/读者索取更多资源

Organic acids in the atmosphere are ubiquitous and are often correlated with mineral dust aerosol. Heterogeneous chemistry and the uptake of organic acids on mineral dust particles can potentially alter the properties of the particle. In this study, heterogeneous uptake and reaction of formic acid, HCOOH, the most abundant carboxylic acid present in the atmosphere, on oxide and clays of the most abundant elements, Si and Al, present in the Earth's crust are investigated under dry and humid conditions. In particular, quantitative adsorption measurements using a Quartz Crystal Microbalance (QCM) coupled with spectroscopic studies using Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) spectroscopy are combined to allow for both quantification of the amount of uptake and identification of distinct adsorbed species formed on silica, alumina, and kaolinite particle surfaces at 298 K. These oxides and clay particles show significant differences in the extent and speciation of adsorbed HCOOH due to inherent differences in surface OH group reactivity. Adsorbed water, controlled by relative humidity, can increase the irreversible uptake of formic acid. Interestingly, the resulting layer of adsorbed formate on the particle surface decreases the particle hydrophilicity thereby decreasing the amount of water taken up by the surface as measured by QCM. Atmospheric implications of this study are discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据