4.6 Article

CCVJ Is Not a Simple Rotor Probe

期刊

JOURNAL OF PHYSICAL CHEMISTRY A
卷 116, 期 44, 页码 10786-10792

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp309019g

关键词

-

资金

  1. Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-FG02-09ER16118]
  2. NSF-REU [CHE-1004641]
  3. Direct For Mathematical & Physical Scien
  4. Division Of Chemistry [1004641] Funding Source: National Science Foundation

向作者/读者索取更多资源

The photochemistry of the rotor probe 9-(2-carboxy-2-cyanovinyl)julolidine (CCVJ) was studied to elucidate a curious effect of fluid flow previously reported. The apparent sensitivity to fluid motion observed in CCVJ but not in the closely related molecule 9-(dicyanovinyl)julolidine (DCVJ) is found to be an indirect effect of a photo-isomerization reaction. The results presented here demonstrate that it is this isomerization, rather than the commonly assumed TICT process, that confers viscosity-sensing ability on these fluorophores. In micromolar solutions in hydroxylic solvents CCVJ exists primarily in the carboxylate form. Only the E isomer of this anion is initially present in solutions prepared from the solid, but in room light such solutions rapidly achieve a photostationary state in which the E isomer and an essentially nonfluorescent Z isomer exist in comparable concentrations. The Z isomer is metastable in S-0 such that in the absence of light the solution reverts slowly to pure E. Unlike DCVJ where only a single isomer is possible, the production of long-lived photoproducts in CCVJ and other asymmetrically substituted styryenyl probes complicates their fluorescence response. Considerable care is needed when such fluorphores are used as steady-state sensors of environmental fluidity are used.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据