4.6 Article

Theoretical Study on the Structure and Stabilities of Molecular Clusters of Oxalic Acid with Water

期刊

JOURNAL OF PHYSICAL CHEMISTRY A
卷 116, 期 47, 页码 11601-11617

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp308499f

关键词

-

资金

  1. National Science Foundation (NSF) [1012994]
  2. Division Of Chemistry
  3. Direct For Mathematical & Physical Scien [1012994] Funding Source: National Science Foundation

向作者/读者索取更多资源

The importance of aerosols to humankind is well-known, playing an integral role in determining Earth's climate and influencing human health. Despite this fact, much remains unknown about the initial events of nucleation. In this work, the molecular properties of common organic atmospheric pollutant oxalic acid and its gas phase interactions with water have been thoroughly examined. Local minima single-point energies for the monomer conformations were calculated at the B3LYP and MP2 level of theory with both 6-311++G(d,p) and aug-cc-pVDZ basis sets and are compared with previous works. Optimized geometries, relative energies, and free energy changes for the stable clusters of oxalic acid conformers with up to six waters were then obtained from B3LYP calculations with 6-31+G(d) and 6-311++G(d,p) basis sets. Initially, cooperative binding is predicted to be the most important factor in nucleation, but as the clusters grow, dipole cancellations are found to play a pivotal role. The clusters of oxalic acid hydrated purely with water tend to produce extremely stable and neutral core systems. Free energies of formation and atmospheric implications are discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据