4.6 Article

Nitrate Ion Photolysis in Thin Water Films in the Presence of Bromide Ions

期刊

JOURNAL OF PHYSICAL CHEMISTRY A
卷 115, 期 23, 页码 5810-5821

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp109560j

关键词

-

资金

  1. National Science Foundation [0431312, 0909227, 0836735]
  2. DOE
  3. Direct For Mathematical & Physical Scien
  4. Division Of Chemistry [0431312] Funding Source: National Science Foundation
  5. Direct For Mathematical & Physical Scien
  6. Division Of Chemistry [909227] Funding Source: National Science Foundation
  7. Directorate For Geosciences [0836735] Funding Source: National Science Foundation
  8. Div Atmospheric & Geospace Sciences [0836735] Funding Source: National Science Foundation

向作者/读者索取更多资源

Nitrate ions commonly coexist with halide ions in aged sea salt particles, as well as in the Arctic snowpack, where NO3- photochemistry is believed to be an important source of NO gamma (NO + NO2 + HONO + ... ). The effects of bromide ions on nitrate ion photochemistry were investigated at 298 +/- 2 K in air using 311 nm photolysis lamps. Reactions were carried out using NaBr/NaNO3 and KBr/KNO3 deposited on the walls of a Teflon chamber. Gas phase halogen products and NO2 were measured as a function of photolysis time using long path FTIR, NO gamma, chemiluminescence and atmospheric pressure ionization mass spectrometry (API-MS). Irradiated NaBr/NaNO3 mixtures show an enhancement in the rates of production of NO2 and Br-2 as the bromide mole fraction (chi(NaBr)) increased. However, this was not the case for KBr/KNO3 mixtures where the rates of production of NO2 and Br-2 remained constant over all values of chi(KBr). Molecular dynamics (MD) simulations show that the presence of bromide in the NaBr solutions pulls sodium toward the solution surface, which in turn attracts nitrate to the interfacial region, allowing for more efficient escape of NO2 than in the absence of halides. However, in the case of KBr/KNO3, bromide ions do not appreciably affect the distribution of nitrate ions at the interface. Clustering of Br- with NO3- and H2O predicted by MD simulations for sodium salts may facilitate a direct intermolecular reaction, which could also contribute to higher rates of NO2 production. Enhanced photochemistry in the presence of halide ions may be important for oxides of nitrogen production in field studies such as in polar snowpacks where the use of quantum yields from laboratory studies in the absence of halide ions would lead to a significant underestimate of the photolysis rates of nitrate ions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据