4.6 Article

Computed Vibrational Frequencies of Actinide Oxides AnO0/+/2+ and AnO20/+/2+ (An = Th, Pa, U, Np, Pu, Am, Cm)

期刊

JOURNAL OF PHYSICAL CHEMISTRY A
卷 115, 期 24, 页码 6646-6656

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp202538k

关键词

-

资金

  1. European Commission [211690]
  2. Hungarian Scientific Research Foundation (OTKA) [75972]

向作者/读者索取更多资源

The vibrational frequencies of the actinide oxides AnO and AnO(2) (An = Th, Pa, U, Np, Pu, Am, Cm) and of their mono- and dications have been calculated using advanced quantum chemical techniques. The stretching fundamental frequencies of the monoxides have been determined by fitting the potential function to single-point energies obtained by relativistic CASPT2 calculations along the stretching coordinate and on this basis solving numerically the ro-vibrational Schrodinger equation. To obtain reliable fundamental frequencies of the dioxides, we developed an empirical approach. In this approach the harmonic vibrational frequencies of the AnO(2)(0/+/2+) species were calculated using eight different exchange-correlation DFT functionals. On the basis of the good correlation found between the vibrational frequencies and computed bond distances, the final frequency values were derived for the CASPT2 reference bond distances from linear regression equations fitted to the DFT data of each species. As a test, the approach provided excellent agreement with accurate experimental data of ThO, ThO+, UO, and UO+. The joint analysis of literature experimental and our computed data facilitated the prediction of reliable gas-phase molecular properties for some oxides. They include the stretching frequencies of PuO, ThO2, UO2, and UO2+ and the bond distance of PuO (1.818 angstrom, being likely within 0.002 angstrom of the real value). Also the derived equilibrium bond distances of ThO2, UO2, and UO2+ (1.896, 1.790, and 1.758 angstrom, respectively) should approximate closely the (yet unknown) experimental values. On the basis of the present results, we suggest that the ground electronic state of PuO2 in Ar and Kr matrices is probably different from that in the gaseous phase, similarly to UO2 observed previously.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据