4.6 Article

Ab Initio and DFT Predictions of Infrared Intensities and Raman Activities

期刊

JOURNAL OF PHYSICAL CHEMISTRY A
卷 115, 期 1, 页码 63-69

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp108057p

关键词

-

向作者/读者索取更多资源

Relative infrared (IR) intensities and relative Raman activities have been computed for vibrations of test molecules, including from two to nine heavy atoms, using second-order Moller-Plesset perturbation theory (MP2), and three hybrid density functionals (B3LYP, M05, and M05-2X). The basis set convergence of vibrational properties is discussed. Our results demonstrate that B3LYP offers the most cost-effective choice for the prediction of molecular vibrational properties, but the predictions of another two tested hybrid functionals are very similar and in very good agreement with experimental data. MP2 shows good performance for the IR intensities, whereas the quality of prediction of the relative Raman activities should be characterized as only moderate. B3LYP calculations of the relative IR intensities using highly compact Sadlej's Z3PolX basis set retain the high accuracy of the more CPU expensive Sadlej's pVTZ and much more expensive aug-cc-pVTZ calculations. Relative Raman activities are more sensitive to basis set effects and require at least Sadlej's pVTZ to obtain quantitative results.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据