4.6 Article

Electronic Substituent Effects in Bicyclo[1.1.1]pentane and [n]Staffane Derivatives: A Quantum Chemical Study Based on Structural Variation

期刊

JOURNAL OF PHYSICAL CHEMISTRY A
卷 114, 期 15, 页码 5162-5170

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp909530u

关键词

-

资金

  1. CASPUR Supercomputing Center, Rome

向作者/读者索取更多资源

The transmission of electronic substituent effects through one or more bicyclo[1.1.1]pentane units has been investigated by ascertaining how a variable substituent at a bridgehead position perturbs the geometry of a phenyl group at the opposite end of the molecule. We have analyzed the molecular structures of many bicyclo[1.1.1]pentane and [n]staffane derivatives of general formula Ph-[C(CH2)(3)C](n)-X (n = 1-5), as obtained from molecular orbital calculations at the HF/6-31G* and B3LYP/6-311++G** levels of theory. When n = 1, the structural variation of the benzene ring is controlled primarily by the long-range polar effect of X, with significant contributions from electronegativity and pi-transfer effects. The capability of the bicyclo[1.1.1]pentane framework to transmit these short-range effects originates from the rather high electron density inside the cage and the hyperconjugative interactions occurring between substituent and framework. A set of at least two bicyclo[1.1.1]pentane units appears to be necessary to remove most of the electronegativity and pi-transfer effects. In higher [n]staffanes (n >= 3), the very small variation of the benzene ring geometry is controlled entirely by the long-range polar effect of X. With charged groups and for n >= 2, the potential energy of the ring deformation decreases linearly with n(-3). In Ph-C(CH2)(3)C-X molecules, the relatively large deformation of the bicyclo[1.1.1]pentane cage is determined primarily by the electronegativity of X, similar to the electronegativity distortion of the benzene ring in Ph-X molecules. Transfer of pi electrons from substituent to cage or vice versa also plays a role in determining the cage deformation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据