4.6 Article

Collisional Energy Transfer Probability Densities P(E, J; E′ J′) for Monatomics Colliding with Large Molecules

期刊

JOURNAL OF PHYSICAL CHEMISTRY A
卷 114, 期 39, 页码 10619-10633

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp106443d

关键词

-

资金

  1. Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-98CH10886]
  2. Div Atmospheric & Geospace Sciences
  3. Directorate For Geosciences [0804255] Funding Source: National Science Foundation

向作者/读者索取更多资源

Collisional energy transfer remains an important area of uncertainty in master equation simulations. Quasi-classical trajectory (QCT) calculations were used to examine the energy transfer probability density distribution (energy transfer kernel), which depends on translational temperature, on the nature of the collision partners, and on the initial and final total internal energies and angular momenta: P(E, J; E', J'). For this purpose, model potential energy functions were taken from the literature or were formulated for pyrazine + Ar and for ethane + Ar collisions. For each collision pair, batches of 10(5) trajectories were computed with three selected initial vibrational energies and five selected values for initial total angular momentum. Most trajectories were carried out with relative translational energy distributions at 300 K, but some were carried out at 1000 or 1200 K. In addition, some trajectories were computed for artificially heavy ethane, in which the H-atoms were assigned masses of 20 amu. The results were binned according to (Delta E, Delta J), and a least-squares analysis was carried out by omitting the quasi-elastic trajectories from consideration. By trial-and-error, an empirical function was identified that fitted all 45 batches of trajectories with moderate accuracy. The results reveal significant correlations between initial and final energies and angular momenta. In particular, a strong correlation between Delta E and Delta J depends on the smallest rotational constant in the excited polyatomic. These results show that the final rotational energy distribution is not independent of the initial distribution, showing that the plausible simplifying assumption described by Smith and Gilbert [Int. J. Chem. Kinet. 1988, 20, 307-329] and extended by Miller, Klippenstein, and Rally [J. Phys. Chem. A 2002, 106, 4904-4913] is invalid for the systems studied.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据