4.6 Article

Ultrafast Energy Transfer from the Intramolecular Bending Vibration to Librations in Liquid Water

期刊

JOURNAL OF PHYSICAL CHEMISTRY A
卷 113, 期 24, 页码 6657-6665

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp9022713

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft [Sfb 450]
  2. MEC [FIS2006-12436-C02-01]
  3. MCI [PR2008005]
  4. NSF [CHE-0417570, CHE-0750477]
  5. Division Of Chemistry
  6. Direct For Mathematical & Physical Scien [0750477] Funding Source: National Science Foundation

向作者/读者索取更多资源

A theoretical study of the water bend-to-libration energy transfer in liquid H2O has been performed by means of nonequilibrium classical molecular dynamics computer simulations. Attention has been focused on the time scale and mechanism of the decay of the fundamental H2O bend vibration and the related issue of the decay of water librational (hindered rotational) excitations, including the important role of that for the excited molecule itself. The time scales found are 270 fs for the decay of the average energy of an H2O molecule excited to the v = 1 state of the bending oscillator and less than 100 fs for excess rotational (librational) kinetic energy, both consistent with recent ultrafast infrared experimental results. The energy flow to the excited molecule rotation and through the first several solvent shells around the excited water molecule is discussed in some detail.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据