4.6 Article

Identifying Reactive Intermediates in the Ullmann Coupling Reaction by Scanning Tunneling Microscopy and Spectroscopy

期刊

JOURNAL OF PHYSICAL CHEMISTRY A
卷 113, 期 47, 页码 13167-13172

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp903590c

关键词

-

资金

  1. National Science Foundation
  2. Office of Naval Research
  3. Division Of Chemistry
  4. Direct For Mathematical & Physical Scien [1041943] Funding Source: National Science Foundation

向作者/读者索取更多资源

We present an atomic-scale study of substituent effects in the Ullmann coupling reaction on Cu{111} using low-temperature scanning tunneling microscopy and spectroscopy. We have observed fluorophenyl intermediates and phenyl intermediates as well as biphenyl products on Cu{111} after exposure to 4-fluoro-1-bromobenzene (p-FC6H4Br) and bromobenzene (C6H5Br), respectively. When p-FC6H4Br dissociatively chemisorbs at 298 K on Cu{111}, the relatively weakly bound Br dissociates, and fluorophenyl intermediates are formed. These intermediates couple to form 4,4'-difluorobiphenyl and desorb at temperatures below 370 K. However, by cooling the substrate to low temperature (4 K), we have observed unreacted fluorophenyl intermediates distributed randomly on terraces and at step edges of the Cu{111} Surface. Alternatively, at similar coverages Of C6H5Br, we have observed biphenyl distributed on terraces and step edges. In each case, Br adatoms were randomly distributed on the Surface. Chemical identification of fluorophenyl and phenyl intermediates and biphenyl products was achieved by vibrational spectroscopy via inelastic tunneling spectroscopy. The strongest vibrational mode in the phenyl species disappears when the tilted intermediates couple to form biphenyl products. We infer that the surface normal component of the dipole moment is important in determining the transition strength in inelastic electron tunneling spectroscopy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据