4.6 Review

Photosynthetic Antenna-Reaction Center Mimicry: Sequential Energy- and Electron Transfer in a Self-assembled Supramolecular Triad Composed of Boron Dipyrrin, Zinc Porphyrin and Fullerene

期刊

JOURNAL OF PHYSICAL CHEMISTRY A
卷 113, 期 30, 页码 8478-8489

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp9032194

关键词

-

资金

  1. National Science Foundation [0804015]
  2. Academy of Finland
  3. Direct For Mathematical & Physical Scien
  4. Division Of Chemistry [804015] Funding Source: National Science Foundation

向作者/读者索取更多资源

A self-assembled supramolecular triad, a model to mimic the photochemical events of photosynthetic antenna-reaction center, viz., sequential energy and electron transfer, has been newly constructed and studied. Boron dipyrrin, zinc porphyrin, and fullerene respectively constitute the energy donor, electron donor, and electron acceptor segments of the antenna-reaction center mimicry. For the construction, first, boron dipyrrin was covalently attached to a zinc porphyrin entity bearing a benzo-18-crown-6 host segment at the opposite end of the porphyrin ring. Next, an alkyl ammonium functionalized fullerene was used to self-assemble the crown ether entity via ion-dipole interactions. The newly formed supramolecular triad was fully characterized by spectroscopic, computational, and electrochemical methods. Selective excitation of the boron dipyrrin moiety in the dyad resulted in energy transfer over 97% efficiency creating singlet excited zinc porphyrin. The rate of energy transfer from the decay measurements of time-correlated singlet photon counting (TCSPC) and up-conversion techniques agreed well with that obtained by the pump-probe technique and revealed efficient photoinduced energy transfer in the dyad (time constant in the order of 10-60 ps depending upon the conformer). Upon forming the supramolecular triad by self-assembling fullerene, the excited zinc porphyrin resulted in electron transfer to the coordinated fullerene yielding a charge-separated state, thus mimicking the antenna-reaction center functionalities of photosynthesis, Nanosecond transient absorption studies yielded a lifetime of the charge-separated state to be 23 mu s indicating charge stabilization in the supramolecular triad. The present supramolecular system represents a successful model to mimic the rather complex combined antenna-reaction center events of photosynthesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据