4.6 Article

Generalized Indirect Covariance NMR Formalism for Establishment of Multidimensional Spin Correlations

期刊

JOURNAL OF PHYSICAL CHEMISTRY A
卷 113, 期 46, 页码 12898-12903

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp9070168

关键词

-

资金

  1. National Institutes of Health [GM 066041]
  2. NSF, State of Florida [DMR 0654118]

向作者/读者索取更多资源

Multidimensional nuclear magnetic resonance (NMR) experiments measure spin-spin correlations, which provide important information about bond connectivities and molecular structure. However, direct observation of certain kinds of correlations can be very time-consuming due to limitations in sensitivity and resolution. Covariance NMR derives correlations between spins via the calculation of a (symmetric) covariance matrix, from which a matrix-square root produces a spectrum with enhanced resolution. Recently, the covariance concept has been adopted to the reconstruction of nonsymmetric spectra from pairs of 2D spectra that have a frequency dimension in common. Since the Unsymmetric covariance NMR procedure lacks the matrix-square root step, it does not suppress relay effects and thereby may generate false positive signals due to chemical shift degeneracy. A generalized covariance formalism is presented here that embeds unsymmetric covariance processing within the context of the regular covariance transform. It permits the construction of unsymmetric covariance NMR spectra subjected to arbitrary matrix functions, such as the square root, with improved spectral properties. This formalism extends the domain of covariance NMR to include the reconstruction of nonsymmetric NMR spectra at resolutions or sensitivities that are superior to the ones achievable by direct measurements.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据