4.6 Article

Investigations of Energy Migration in an Organic Dendrimer Macromolecule for Sensory Signal Amplification

期刊

JOURNAL OF PHYSICAL CHEMISTRY A
卷 113, 期 16, 页码 4763-4771

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp8112123

关键词

-

资金

  1. National Science Foundation

向作者/读者索取更多资源

The issue of macromolecular exciton delocalization length and fluorescence sensing of energetic materials is investigated and modeled from results of nonlinear optical and time-resolved spectroscopy. By using two- and three-photon absorption techniques the fluorescence quenching effects of an organic dendrimer for sensing TNT were carried out. The Stem-Volmer plots for the set of dendrimers were examined and a large quenching constant for the dendrimer G4 was obtained (1400 M-1). The quenching constant was found to increase with the dendrimer generation number. The mechanism for the enhanced sensitivity of the dendrimer system was examined by probing the exciton dynamics with femtosecond fluorescence up-conversion. Fluorescence lifetime measurements revealed a multicomponent relaxation that varied with dendrimer generation. Fluorescence anisotropy decay measurements were used to probe the exciton migration length in these dendrimer systems and for the large structure the excitation migration area covers similar to 20 units. All of these results were used in a model that describes the exciton localization length with the fluorescence quenching strength. The use of time-resolved techniques allows for a closer and more detailed description of the mechanism of sensory amplification in organic macromolecules.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据