4.6 Article

Curl condition for a four-state Born-Oppenheimer system employing the Mathieu equation

期刊

JOURNAL OF PHYSICAL CHEMISTRY A
卷 112, 期 40, 页码 9868-9885

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp8029709

关键词

-

向作者/读者索取更多资源

When a group of four states forms a subspace of the Hilbert space, i.e., appears to be strongly coupled with each other but very weakly interacts with all other states of the entire space, it is possible to express the nonadiabatic coupling (NAC) elements either in terms of s or in terms of electronic basis function angles, namely, mixing angles presumably representing the same sub-Hilbert space. We demonstrate that those explicit forms of the NAC terms satisfy the curl conditions-the necessary requirements to ensure the adiabatic-diabatic transformation in order to remove the NAC terms (could be often singular also at specific point(s) or along a seam in the configuration space) in the adiabatic representation of nuclear SE and to obtain the diabatic one with smooth functional form of coupling terms among the electronic states. In order to formulate extended Born-Oppenheimer (EBO) equations [J. Chem. Phys. 2006, 124, 074101] for a group of four states, we show that there should exist a coordinate independent ratio of the gradients for each pair of ADT/mixing angles leading to zero curls and, thereafter, provide a brief discussion on its analytical validity. As a numerical justification, we consider the first four eigenfunctions of the Mathieu equation to demonstrate the interesting features of nonadiabatic coupling (NAC) elements, namely, the validity of curl conditions and the nature of curl equations around CIs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据