4.6 Article

Proton spin diffusion in polyethylene as a function of magic-angle spinning rate. A phenomenological approach

期刊

JOURNAL OF PHYSICAL CHEMISTRY A
卷 112, 期 6, 页码 1228-1233

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp077067u

关键词

-

向作者/读者索取更多资源

Starting from the phenomenological Bloembergen-Purcell-Pound equation a relation between magic-angle spinning (MAS) rate and spin diffusion is derived. The resulting model equation was fitted to observed spin diffusion versus MAS rate data obtained at 298 K on an high-density polyethylene sample, revealing a reduction in the effective spin diffusivity by (65 + 5)% when increasing the MAS rate from 2 to 12 kHz. The same model equation enabled the rigid-lattice diffusivity to be estimated and was found to be only slightly higher, by approximately 10%, compared to the spin diffusivity observed at the lowest MAS rate applied (2 kHz). Moreover, the model equation predicts a reduction in the effective spin diffusivity by more than 90% when increasing the MAS rate to more than 30 kHz.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据