4.5 Article

Quantum requirements for growth and fatty acid biosynthesis in the marine diatom Phaeodactylum tricornutum (Bacillariophyceae) in nitrogen replete and limited conditions

期刊

JOURNAL OF PHYCOLOGY
卷 49, 期 2, 页码 381-388

出版社

WILEY
DOI: 10.1111/jpy.12046

关键词

biofuels; diatoms; lipid biosynthesis; nitrate reductase; quantum requirements; tungstate

资金

  1. DOE-EERE [DE-EE0003373]
  2. Busch-Waksman Postdoctoral Fellowship

向作者/读者索取更多资源

We determined the quantum requirements for growth (1/phi) and fatty acid (FA) biosynthesis (1/phi FA) in the marine diatom, Phaeodactylum tricornutum, grown in nutrient replete conditions with nitrate or ammonium as nitrogen sources, and under nitrogen limitation, achieved by transferring cells into nitrogen free medium or by inhibiting nitrate assimilation with tungstate. A treatment in which tungstate was supplemented to cells grown with ammonium was also included. In nutrient replete conditions, cells grew exponentially and possessed virtually identical 1/phi of 4044mol photonsmol C1. In parallel, 1/phi FA varied between 380 and 409mol photonsmol C1 in the presence of nitrate, but declined to 348mol photonsmol C1 with ammonium and to 250mol photonsmol C1 with ammonium plus tungstate, indicating an increase in the efficiency of FA biosynthesis relative to cells grown on nitrate of 8% and 35%, respectively. While the molecular mechanism for this effect remains poorly understood, the results unambiguously reveal that cells grown on ammonium are able to direct more reductant to lipids. This analysis suggests that when cells are grown with a reduced nitrogen source, fatty acid biosynthesis can effectively become a sink for excess absorbed light, compensating for the absence of energetically demanding nitrate assimilation reactions. Our data further suggest that optimal lipid production efficiency is achieved when cells are in exponential growth, when nitrate assimilation is inhibited, and ammonium is the sole nitrogen source.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据